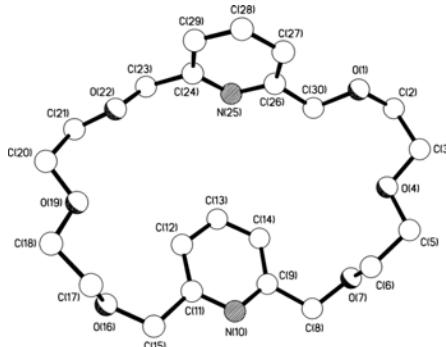


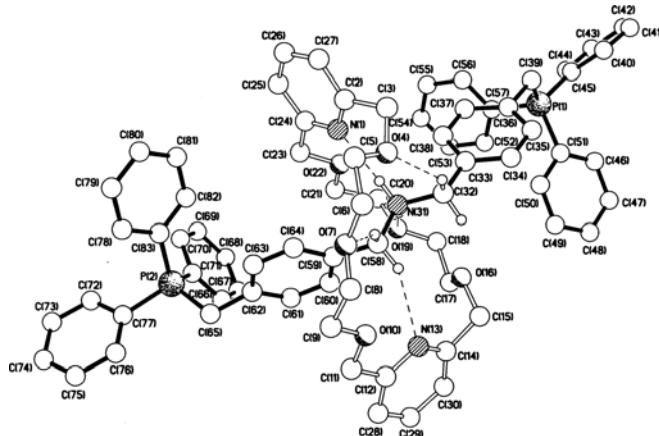
ORGANIC LETTERS

Ammonium Ion Binding with Pyridine-Containing Crown Ethers


Theresa Chang, Aaron M. Heiss, Stuart J. Cantrill, Matthew C. T. Fyfe, Anthony R. Pease, Stuart J. Rowan, J. Fraser Stoddart, Andrew J. P. White, David J. Williams

SUPPORTING INFORMATION (3 PAGES)

EXPERIMENTAL PROCEDURES FOR **DP24C8** AND **4-H·3PF₆**


CRYSTAL DATA FOR **[DP24C8]**

CAN BE FOUND IN THE ACCOMPANYING FILE CALLED “**FS9818.CIF**”

CRYSTAL DATA FOR **[DP24C8·4-H][3PF₆]**

CAN BE FOUND IN THE ACCOMPANYING FILE CALLED “**FS0004.CIF**”

Experimental Section

General

All reagents and solvents were used as received unless otherwise stated. Reactions were carried out under an atmosphere of anhydrous argon. Reactions were monitored by TLC on silica plates (Merck, 0.25 mm) and visualized with UV light (254 nm). Melting points given are uncorrected. NMR Spectra were recorded on either a Bruker ARX 400 MHz or ARX 500 spectrometer. Chemical shifts reported are referenced to the residual solvent peak.

Synthesis

Dipyridyl[24]crown-8 (DP24C8)

THF (250 mL) was added to a 1 L round-bottomed flask and NaH (2.15 g, 0.090 mol) was added portionwise and heated under reflux. Diethyleneglycol (2.38 g, 0.022 mol) and 2,6-bis(*p*-toluenesulfonyloxy)methyl)pyridine (10.04 g, 0.022 mol) were dissolved in THF (200 mL) and then added dropwise to the reaction mixture over 12 h. The mixture was refluxed for a further 3 d before being quenched with *i*-PrOH/MeOH/H₂O. The solvent was evaporated under *in vacuo* and the residue partitioned between CH₂Cl₂ (200 mL) and brine (100 mL). The organic layer was dried (MgSO₄) and evaporated to afford a red brown residue that was passed through a short pad of SiO₂ (200 g: gradient elution with CH₂Cl₂/Me₂CO, 2:1 to 1:1) to give the title compound as a colorless oil that solidified upon standing (1.10 g, 12 %); ¹H NMR (400 MHz, CDCl₃): δ = 3.67 (m, 8H), 3.73 (m, 8H), 4.65 (s, 8H), 7.35 (d, *J* = 7.8 Hz, 4H), 7.49 (t, *J* = 7.8 Hz, 2H); ¹³C NMR (100 MHz, CD₃CN): δ = 70.2, 70.8, 73.9, 120.0, 137.3, 157.8; FABMS: *m/z* (%): 441 (26) [M + Na]⁺, 419.0 (100) [M + H]⁺.

4-H·3PF₆

Triphenylphosphine (264 mg, 1.0 mmol) was added to a solution of **3**-H·PF₆ (253 mg, 4.8 mmol) and DP24C8 (200 mg, 4.8 mmol) in CH₃NO₂ (1 mL). The reaction was left to stir for 16 h. at

room temperature. The resulting white precipitate, **5**·3PF₆, (0.215 g, 45 %) was filtered and washed with CH₂Cl₂ (This compound has been characterized previously: see ref. 1). Et₂O was added to the solution and the resulting precipitate filtered and washed with Et₂O. The precipitate was dissolved in MeCN and a saturated solution of NH₄PF₆ was added until no further precipitation was observed. The resulting solid was filtered, washed with water and dried. The crude compound was purified by flash chromatography with 5% MeOH in CH₂Cl₂ to yield 0.250 g (39 %) of **4**·3PF₆. ¹H NMR (400 MHz, CD₃CN) δ = 3.32-3.34 (m, 8H), 3.42-3.44 (m, 8H), 4.19 (s, 8H), 4.39-4.43 (m, 4H), 4.58 (d, *J* = 15.1 Hz, 4H), 6.80-6.86 (m, 4H), 7.14 (d, *J* = 8.1 Hz, 4H), 7.21 (d, *J* = 7.7 Hz, 4H), 7.49-7.55 (m, 12H), 7.62-7.66 (m, 12H), 7.69 (t, *J* = 7.6 Hz, 2H), 7.84-7.86 (m, 6H); ¹³C NMR (CD₃CN, 100 MHz) δ = 29.4 (*J*_{PC} = 48.6 Hz), 51.3, 70.1, 70.4, 73.5, 122.6, 128.0 (*J*_{PC} = 8.3 Hz), 129.1, 130.2 (*J*_{PC} = 12.6 Hz), 130.4 (*J*_{PC} = 3.0 Hz), 131.1 (*J*_{PC} = 5.4 Hz), 132.9 (*J*_{PC} = 3.9 Hz), 134.1 (*J*_{PC} = 9.7 Hz), 135.4 (*J*_{PC} = 2.9 Hz), 138.1, 156.6; ³¹P NMR (162 MHz, CD₃CN): δ = 21.8 (Ph₃P⁺), -144.6 (septet, *J* = 706 Hz, PF₆⁻). FABMS *m/z* (%): 1456 (38) [M-PF₆]⁺, 1310 (100) [M-2PF₆]⁺, 1164 (84) [M-3PF₆]⁺.

(1) Rowan, S. J.; Cantrill, S. J.; Stoddart, J. F. *Org. Lett.* **1999**, *1*, 129-132.